Abstract
The consistency strength of the ∑2 priority method is I∑2, yet classical theorems proven by this method have been proved from I∑1. Is there a statement about the structure of the r.e. degrees that can be proved using a ∑2 argument and cannot be proved from I∑1?We rule out statements in the language of partial orderings of the form …[], where is quantifier-free, by showing that the following can be proved in I∑1.If P is any recursive partial ordering with a maximal point d, and a is any nonrecursive incomplete r.e. degree, then P can be embedded into the r.e. degrees by an embedding sending d to a