On finite rigid structures

Journal of Symbolic Logic 61 (2):549-562 (1996)
  Copy   BIBTEX

Abstract

The main result of this paper is a probabilistic construction of finite rigid structures. It yields a finitely axiomatizable class of finite rigid structures where no L ω ∞,ω formula with counting quantifiers defines a linear order

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,937

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

How to define a linear order on finite models.Lauri Hella, Phokion G. Kolaitis & Kerkko Luosto - 1997 - Annals of Pure and Applied Logic 87 (3):241-267.
Asymptotic Classes of Finite Structures.Richard Elwes - 2007 - Journal of Symbolic Logic 72 (2):418 - 438.
The expressive power of fixed-point logic with counting.Martin Otto - 1996 - Journal of Symbolic Logic 61 (1):147-176.
Constructing ω-stable structures: Rank 2 fields.John T. Baldwin & Kitty Holland - 2000 - Journal of Symbolic Logic 65 (1):371-391.

Analytics

Added to PP
2009-01-28

Downloads
193 (#127,505)

6 months
1 (#1,886,937)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

How to define a linear order on finite models.Lauri Hella, Phokion G. Kolaitis & Kerkko Luosto - 1997 - Annals of Pure and Applied Logic 87 (3):241-267.
Canonization for two variables and puzzles on the square.Martin Otto - 1997 - Annals of Pure and Applied Logic 85 (3):243-282.
Finite variable logics in descriptive complexity theory.Martin Grohe - 1998 - Bulletin of Symbolic Logic 4 (4):345-398.
Finite and Infinite Model Theory-A Historical Perspective.John Baldwin - 2000 - Logic Journal of the IGPL 8 (5):605-628.

Add more citations

References found in this work

How to define a linear order on finite models.Lauri Hella, Phokion G. Kolaitis & Kerkko Luosto - 1997 - Annals of Pure and Applied Logic 87 (3):241-267.

Add more references