Abstract
We analyze the set-theoretic strength of determinacy for levels of the Borel hierarchy of the form$\Sigma _{1 + \alpha + 3}^0 $, forα<ω1. Well-known results of H. Friedman and D.A. Martin have shown this determinacy to requireα+ 1 iterations of the Power Set Axiom, but we ask what additional ambient set theory is strictly necessary. To this end, we isolate a family of weak reflection principles, Π1-RAPα, whose consistency strength corresponds exactly to the logical strength of${\rm{\Sigma }}_{1 + \alpha + 3}^0 $determinacy, for$\alpha < \omega _1^{CK} $. This yields a characterization of the levels ofLby or at which winning strategies in these games must be constructed. Whenα= 0, we have the following concise result: The leastθso that all winning strategies in${\rm{\Sigma }}_4^0 $games belong toLθ+1is the least so that$L_\theta \models {\rm{``}}{\cal P}\left$exists, and all wellfounded trees are ranked”.