Algebraic completion without the axiom of choice

Mathematical Logic Quarterly 68 (4):394-397 (2022)
  Copy   BIBTEX

Abstract

Läuchli and Pincus showed that existence of algebraic completions of all fields cannot be proved from Zermelo‐Fraenkel set theory alone. On the other hand, important special cases do follow. In particular, I show that an algebraic completion of can be constructed in Zermelo‐Fraenkel set theory.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,174

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A class of higher inductive types in Zermelo‐Fraenkel set theory.Andrew W. Swan - 2022 - Mathematical Logic Quarterly 68 (1):118-127.
The finiteness of compact Boolean algebras.Paul Howard - 2011 - Mathematical Logic Quarterly 57 (1):14-18.
Von Rimscha's Transitivity Conditions.Paul Howard, Jean E. Rubin & Adrienne Stanley - 2000 - Mathematical Logic Quarterly 46 (4):549-554.
Separablilty of metric measure spaces and choice axioms.Paul Howard - 2024 - Archive for Mathematical Logic 63 (7):987-1003.
Extensionality in Zermelo‐Fraenkel Set Theory.R. Hinnion - 1986 - Mathematical Logic Quarterly 32 (1‐5):51-60.
Extensionality in Zermelo‐Fraenkel Set Theory.R. Hinnion - 1986 - Mathematical Logic Quarterly 32 (1-5):51-60.
The ∀ n∃‐Completeness of Zermelo‐Fraenkel Set Theory.Daniel Gogol - 1978 - Mathematical Logic Quarterly 24 (19-24):289-290.
On a Family of Models of Zermelo-Fraenkel Set Theory.Bruno Scarpellini - 1966 - Mathematical Logic Quarterly 12 (1):191-204.
The ∀n∃‐Completeness of Zermelo‐Fraenkel Set Theory.Daniel Gogol - 1978 - Mathematical Logic Quarterly 24 (19‐24):289-290.

Analytics

Added to PP
2022-07-10

Downloads
35 (#648,116)

6 months
6 (#866,322)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Algebraic closure without choice.Bernhard Banaschewski - 1992 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 38 (1):383-385.
Algebraic closure without choice.Bernhard Banaschewski - 1992 - Mathematical Logic Quarterly 38 (1):383-385.
Algebraic Closure Without Choice.Bernahrd Banschewski - 1992 - Mathematical Logic Quarterly 38 (1):383-385.

Add more references