Self-scaled barriers for irreducible symmetric cones

Abstract

Self-scaled barrier functions are fundamental objects in the theory of interior-point methods for linear optimization over symmetric cones, of which linear and semidefinite programming are special cases. We are classifying all self-scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with a decomposition theorem for self-scaled barriers this concludes the algebraic classification theory of these functions. After introducing the reader to the concepts relevant to the problem and tracing the history of the subject, we start by deriving our result from first principles in the important special case of semidefinite programming. We then generalise these arguments to irreducible symmetric cones by invoking results from the theory of Euclidean Jordan algebras.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,497

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2017-06-17

Downloads
5 (#1,753,254)

6 months
3 (#1,469,629)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references