Abstract
Numerical categories such as parity, i.e., being odd or even, have frequently been shown to influence how particular numbers are processed. Mathematically, number parity is defined categorically. So far, cognitive, and psychological accounts have followed the mathematical definition and defined parity as a categorical psychological representation as well. In this manuscript, we wish to test the alternative account that cognitively, parity is represented in a more gradual manner such that some numbers are represented as “more odd” or “more even” than other odd or even numbers, respectively. Specifically, parity processing might be influenced by more specific properties such as whether a number is a prime, a square number, a power of 2, part of a multiplication table, divisible by 4 or by 5, and many others. We suggest that these properties can influence the psychologically represented parity of a number, making it more or less prototypical for odd- or evenness. In the present study, we tested the influence of these numerical properties in a bimanual parity judgment task with auditorily presented two-digit numbers. Additionally, we further investigated the interaction of these numerical properties with linguistic factors in three language groups (English, German, and Polish). Results show significant effects on reaction times of the congruity of parity status between decade and unit digits, even if numerical magnitude and word frequency are controlled. We also observed other effects of the above specific numerical properties, such as multiplication attributes, which facilitated or interfered with the speed of parity judgment. Based on these effects of specific numerical properties we proposed and elaborated a parity continuum account. However, our cross-lingual study also suggests that parity representation and/or access seem to depend on the linguistic properties of the respective language or education and culture. Overall, the results suggest that the “perceived” parity is not the same as objective parity, and some numbers are more prototypical exemplars of their categories.