Abstract
We prove, for each 4⩽ n ω , that S Ra CA n+1 cannot be defined, using only finitely many first-order axioms, relative to S Ra CA n . The construction also shows that for 5⩽n S Ra CA n is not finitely axiomatisable over RA n , and that for 3⩽m S Nr m CA n+1 is not finitely axiomatisable over S Nr m CA n . In consequence, for a certain standard n -variable first-order proof system ⊢ m , n of m -variable formulas, there is no finite set of m -variable schemata whose m -variable instances, when added to ⊢ m , n as axioms, yield ⊢ m , n +1