Non-Turing Computers and Non-Turing Computability
Abstract
A true Turing machine requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime, but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the "existence" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar to our world. But curiously enough-and this is the main point of this paper-some of these close worlds have a special spacetime structure that allows TMs to perform certain Turing unsolvable tasks. For example, in one kind of spacetime a TM can be used to solve first-order predicate logic and the halting problem. And in a more complicated spacetime, TMs can be used to decide arithmetic. These new computers serve to show that Church's thesis is a thoroughly contingent claim. Moreover, since these new computers share the fundamental properties of a TM in ordinary operation, a computability theory based on these non-Turing computers is no less worthy of investigation than orthodox computability theory. Some ideas about this new mathematical theory are given.