Abstract
It is known that the Schrödinger equation may be derived from a hydrodynamic model in which the Lagrangian position coordinates of a continuum of particles represent the quantum state. Using Routh’s method of ignorable coordinates it is shown that the quantum potential energy of particle interaction that represents quantum effects in this model may be regarded as the kinetic energy of additional ‘concealed’ freedoms. The method brings an alternative perspective to Planck’s constant, which plays the role of a hidden variable, and to the canonical quantization procedure, since what is termed ‘kinetic energy’ in quantum mechanics may be regarded literally as energy due to motion