Abstract
This paper considers the implications for the relational-substantival debate of observations of parity nonconservation in weak interactions, a much neglected topic. It is argued that 'geometric proofs' of absolute space, first proposed by Kant (1768), fail, but that parity violating laws allow 'mechanical proofs', like Newton's laws. Parity violating laws are explained and arguments analogous to those of Newton's Scholium are constructed to show that they require absolute spacetime structure--namely, an orientation--as Newtonian mechanics requires affine structure. Finally, it is considered how standard relationist responses to Newton's argument might respond to the new challenge of parity nonconservation