Abstract
Artificial intelligence (AI) and machine learning (ML) systems increasingly purport to deliver knowledge about people and the world. Unfortunately, they also seem to frequently present results that repeat or magnify biased treatment of racial and other vulnerable minorities. This paper proposes that at least some of the problems with AI’s treatment of minorities can be captured by the concept of epistemic injustice. To substantiate this claim, I argue that (1) pretrial detention and physiognomic AI systems commit testimonial injustice because their target variables reflect inaccurate and unjust proxies for what they claim to measure; (2) classification systems, such as facial recognition, commit hermeneutic injustice because their classification taxonomies, almost no matter how they are derived, reflect and perpetuate racial and other stereotypes; and (3) epistemic injustice better explains what is going wrong in these types of situations than does the more common focus on procedural (un)fairness.