Abstract
In this paper we make an attempt to study classes of models by using general logics. We do not believe that Lww is always the best logic for analyzing a class of models. Let K be a class of models and L a logic. The main assumptions we make about K and C are that K has the L-amalgamation property and, later in the paper, that K does not omit L-types. We show that, if modified suitably, most of the results of stability theory hold in this context. The main difference is that existentially closed models of K play the role that arbitrary models play in traditional stability theory. We prove e. g. a structure theorem for the class of existentially closed models of K assuming that K is a trivial superstable class with ndop