Abstract
We present an adaptation of continuous first order logic to unbounded metric structures. This has the advantage of being closer in spirit to C. Ward Henson's logic for Banach space structures than the unit ball approach, as well as of applying in situations where the unit ball approach does not apply. We also introduce the process of single point emph{emboundment}, allowing to bring unbounded structures back into the setting of bounded continuous first order logic. Together with results from cite{BenYaacov:Perturbations} regarding perturbations of bounded metric structures, we prove a Ryll-Nardzewski style characterisation of theories of Banach spaces which are separably categorical up to small perturbation of the norm. This last result is motivated by an unpublished result of Henson