Abstract
Second-order languages, canonically understood, allow quantification over all sets of objects in the range of the first-order variables. In this chapter two arguments are given against the suitability of using second-order consequence as the consequence relation of axiomatic theories. According to the first argument, second-order languages are inadequate for axiomatizing set theory because of the strong set-theoretic content coded by second-order consequence. The second more general argument is directed against the determinacy of second-order consequence, that is, against the assumption that this is a definite relation. Only taking a strong realist view of set theory can one maintain that it is.