Classical universes are perfectly predictable!
Abstract
I argue that in a classical universe, all the events that ever happen are encoded in each of the universe's parts. This conflicts with a statement which is widely believed to lie at the basis of relativity theory: that the events in a space-time region R determine only the events in R's domain of dependence but not those in other space-time regions. I show how, from this understanding, a new prediction method (which I call the &unknown;Smoothness Method&unknown;) can be obtained which allows us to predict future events on the basis of local observational data. Like traditional prediction methods, this method makes use of so-called &unknown;ceteris paribus clauses&unknown;, i.e. assumptions about the unobserved parts of the universe. However, these assumptions are used in a way which enables us to predict the behaviour of open systems with arbitrary accuracy, regardless of the influence of their environment--which has not been achieved by traditional methods. In a sequel to this paper (Schmidt, 1998), I will prove the Uniqueness and Predictability Theorems on which the Smoothness Method is based, and comment in more detail on its mathematical properties.