Abstract
B cell activation is accompanied by metabolic adaptations to meet the increased energetic demands of proliferation. The metabolic composition of the microenvironment is known to change during a germinal center response, in inflamed tissue and to vary significantly between different organs. To sustain cellular homeostasis B cells need to be able to dynamically adapt to changes in their environment. An inability to take up and process available nutrients can result in impaired B cell growth and a diminished humoral immune response. Furthermore, the metabolic microenvironment can affect B cell signaling and provide a means to avoid aberrant proliferation or modulate B cell function. Thus, a better understanding of the intricate interplay between cell signaling and metabolism could provide novel insight into how B cell function is regulated and have implications for the development of vaccines or treatment of autoimmune disorders and B cell derived malignancies. Throughout their lifespan, B cells are exposed to different metabolic environments. Signaling pathways regulating cellular responses to metabolic stress not only help to maintain B cell viability and to facilitate cellular functions but may also play an important role in preventing excessive proliferation and malignant transformation.