Synthese 109 (3):293 - 309 (
1996)
Copy
BIBTEX
Abstract
Subjective Bayesians typically find the following objection difficult to answer: some joint probability measures lead to intuitively irrational inductive behavior, even in the long run. Yet well-motivated ways to restrict the set of reasonable prior joint measures have not been forthcoming. In this paper I propose a way to restrict the set of prior joint probability measures in particular inductive settings. My proposal is the following: where there exists some successful inductive method for getting to the truth in some situation, we ought to employ a (joint) probability measure that is inductively successful in that situation, if such a measure exists. In order to do show that the restriction is possible to meet in a broad class of cases, I prove a Bayesian Completeness Theorem, which says that for any solvable inductive problem of a certain broad type, there exist probability measures that a Bayesian could use to solve the problem. I then briefly compare the merits of my proposal with two other well-known proposals for constraining the class of admissible subjective probability measures, the leave the door ajar condition and the maximize entropy condition.