The complexity of topological conjugacy of pointed Cantor minimal systems

Archive for Mathematical Logic 56 (3-4):215-235 (2017)
  Copy   BIBTEX

Abstract

In this paper, we analyze the complexity of topological conjugacy of pointed Cantor minimal systems from the point of view of descriptive set theory. We prove that the topological conjugacy relation on pointed Cantor minimal systems is Borel bireducible with the Borel equivalence relation ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{{\mathbb {N}}}$$\end{document} defined by xΔR+y⇔{xi:i∈N}={yi:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \varDelta _{\mathbb {R}}^+y \Leftrightarrow \{x_i{:}\,i \in {\mathbb {N}}\}=\{y_i{:}\,i \in {\mathbb {N}}\}$$\end{document}. Moreover, we show that ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} is a lower bound for the Borel complexity of topological conjugacy of Cantor minimal systems. Finally, we interpret our results in terms of properly ordered Bratteli diagrams and discuss some applications.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,174

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Coherent trees that are not Countryman.Yinhe Peng - 2017 - Archive for Mathematical Logic 56 (3-4):237-251.
A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
Maximally embeddable components.Miloš S. Kurilić - 2013 - Archive for Mathematical Logic 52 (7-8):793-808.
Convexity and constructive infima.Josef Berger & Gregor Svindland - 2016 - Archive for Mathematical Logic 55 (7-8):873-881.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.

Analytics

Added to PP
2017-11-06

Downloads
26 (#855,855)

6 months
10 (#415,916)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Burak Kaya
Bogazici University

References found in this work

Invariant descriptive set theory. Pure and applied mathematics.Su Gao - 2011 - Bulletin of Symbolic Logic 17 (2):265-267.

Add more references