Abstract
Water stress causes significant losses to agriculture crops mostly grown in rainfed condition. Water stress affects the plant–water relation that causes specific and nonspecific damages to crop. Water stress is categorized as the dominant abiotic stress that is responsible for secondary stresses including oxidative stress that has hazardous effects on the biomolecules of cell. Plant growth-promoting rhizobacteria inoculated plants grow well under biotic and abiotic stresses. Plant survival in abiotic stresses defends on many adaptations and mitigation strategies. PGPR play dominant role in protecting plants from these stresses either directly or indirectly. PGPR colonize the rhizosphere and Drought tolerance by producing different metabolites and other volatile compounds and by regulating gene expression and altering root morphology under water scarcity. PGPR influence physiology of plant in response to drought. Considerable growth in cereals has been noted in response to bacterial inoculation. PGPRs like Azospirillum, Pseudomonas, Bacillus and Azotobacter are associated with plant roots, improve shoot and root growth and drought tolerance; however, current works unveiled that PGPRs not have just stimulated the systemic tolerance to abiotic stresses but also improve nutrient uptake.