Abstract
Logicism is the view that mathematical truths are logical truths. But a logical truth is commonly thought to be one with a universally valid form. The form of “7 > 5” would appear to be the same as “4 > 6”. Yet one is a mathematical truth, and the other not a truth at all. To preserve logicism, we must maintain that the two either are different subforms of the same generic form, or that their forms are not at all what they appear. The historical record shows that Russell pursued both these options, but that the struggle with the logical paradoxes pushed him away from the first kind of response and toward the second. An object cannot itself have a kind of inner logical complexity that makes a proposition have a different logical form merely in virtue of being about it, nor can their representatives in logical forms be single things different for different forms, at least not without postulating too many such objects and thereby creating Cantorian diagonal paradoxes. There are only apparent objects which are actually fragments of logical forms, different in different cases.