Topos based semantic for constructive logic with strong negation

Mathematical Logic Quarterly 38 (1):509-519 (1992)
  Copy   BIBTEX

Abstract

The aim of the paper is to show that topoi are useful in the categorial analysis of the constructive logic with strong negation. In any topos ϵ we can distinguish an object Λ and its truth-arrows such that sets ϵ have a Nelson algebra structure. The object Λ is defined by the categorial counterpart of the algebraic FIDEL-VAKARELOV construction. Then it is possible to define the universal quantifier morphism which permits us to make the first order predicate calculus. The completeness theorem is proved using the Kripke-type semantic defined by THOMASON

Other Versions

reprint Klunder, Barbara; Klunder, B. (1992) "Topos based semantic for constructive logic with strong negation". Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 38(1):509-519

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,423

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-12-01

Downloads
26 (#859,286)

6 months
4 (#1,264,753)

Historical graph of downloads
How can I increase my downloads?

References found in this work

An algebraic approach to non-classical logics.Helena Rasiowa - 1974 - Warszawa,: PWN - Polish Scientific Publishers.
Topoi: The Categorial Analysis of Logic.R. I. Goldblatt - 1982 - British Journal for the Philosophy of Science 33 (1):95-97.

Add more references