Zahlen

De Gruyter (2016)
  Copy   BIBTEX

Abstract

Warum schon bei Platon die Zahlen und ihr gutes Verständnis einen speziellen Platz in der philosophischen Bildung einnehmen, ist zunächst ein Rätsel. Eine Aufhebung der zukunftsweisenden Leistungen der Pythagoräer besonders in der Harmonielehre gegenüber mystifizierendem Verständnis eines Pythagoräismus ist daher nach wie vor interessant, auch noch im Blick auf Freges ‚drittes Reich‘ abstrakter Gegenstände oder Cantors Mengenlehre. Zahlen sind von philosophischem Interesse durch ihr enges Verhältnis zu den Formen von Rationalität und Sprache – und wegen der Möglichkeit, Aussagen nicht bloß über Zahlen selbst, sondern auch über andere Verhältnisse durch Zahlen zu kodieren und dadurch zum Thema zu machen. Auf einfach nachvollziehbare Weise wird außerdem die Verschränkung von mathematischem Fortschritt, von Problemen und ihren Aufhebungen vorgeführt oder skizziert, etwa die Entdeckung inkommensurabler Größenverhältnisse und das Rechnen mit infinitesimalen Größen, Cantors Stufen des Unendlichen, Brouwers Intuitionismus, Gödels Unvollständigkeitsätze, u.a.m. Die Philosophie der Mathematik wird zum Lehrstück logischer Selbstreflexion überhaupt.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,174

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2016-08-13

Downloads
34 (#667,296)

6 months
5 (#1,047,105)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references