Abstract
An algebraic block-diagonalization of the Dirac Hamiltonian in a time-independent external field reveals a charge-index conservation law which forbids the physical phenomena of the Klein paradox type and guarantees a single-particle nature of the Dirac equation in strong external fields. Simultaneously, the method defines simpler quantum-mechanical objects—paulions and antipaulions, whose 2-component wave functions determine the Dirac electron states through exact operator relations. Based on algebraic symmetry, the presented theory leads to a new understanding of the Dirac equation physics, including new insight into the Dirac measurements and a consistent scheme of relativistic quantum mechanics of electron in the paulion representation. Along with analysis of the mathematical anatomy of the Klein paradox falsity, a complete set of paradox-free eigenfunctions for the Klein problem is obtained and investigated via stationary solutions of the Pauli-like equations with respective paulion Hamiltonians. It is shown that the physically correct Dirac states in the Klein zone are characterized by the total particle reflection from the potential step and satisfy the fundamental charge-index conservation law