Asymptotic Densities in Logic and Type Theory

Studia Logica 88 (3):385-403 (2008)
  Copy   BIBTEX

Abstract

This paper presents a systematic approach for obtaining results from the area of quantitative investigations in logic and type theory. We investigate the proportion between tautologies (inhabited types) of a given length n against the number of all formulas (types) of length n. We investigate an asymptotic behavior of this fraction. Furthermore, we characterize the relation between number of premises of implicational formula (type) and the asymptotic probability of finding such formula among the all ones. We also deal with a distribution of these asymptotic probabilities. Using the same approach we also prove that the probability that randomly chosen fourth order type (or type of the order not greater than 4), which admits decidable lambda definability problem, is zero.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,865

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
55 (#391,139)

6 months
2 (#1,686,184)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Fuzzy logics – quantitatively.Zofia Kostrzycka & Marek Zaionc - 2023 - Journal of Applied Non-Classical Logics 34 (1):97-132.

Add more citations