Abstract
Krynicki, M. and M. Mostowski, Decidability problems in languages with Henkin quantifiers, Annals of Pure and Applied Logic 58 149–172.We consider the language L with all Henkin quantifiers Hn defined as follows: Hnx1…xny1…yn φ iff f1…fnx1. ..xn φ, ...,fn). We show that the theory of equality in L is undecidable. The proof of this result goes by interpretation of the word problem for semigroups.Henkin quantifiers are strictly related to the function quantifiers Fn defined as follows: Fnx1…xny1…yn φ iff fx1…xn φ,...,f). In contrast with the first result we show that the theory of equality with all quantifiers Fn is decidable.We also consider decidability problems for other theories in languages L and L