Predictive Statistical Mechanics and Macroscopic Time Evolution: Hydrodynamics and Entropy Production

Foundations of Physics 46 (7):891-914 (2016)
  Copy   BIBTEX

Abstract

In the previous papers, it was demonstrated that applying the principle of maximum information entropy by maximizing the conditional information entropy, subject to the constraint given by the Liouville equation averaged over the phase space, leads to a definition of the rate of entropy change for closed Hamiltonian systems without any additional assumptions. Here, we generalize this basic model and, with the introduction of the additional constraints which are equivalent to the hydrodynamic continuity equations, show that the results obtained are consistent with the known results from the nonequilibrium statistical mechanics and thermodynamics of irreversible processes. In this way, as a part of the approach developed in this paper, the rate of entropy change and entropy production density for the classical Hamiltonian fluid are obtained. The results obtained suggest the general applicability of the foundational principles of predictive statistical mechanics and their importance for the theory of irreversibility.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,126

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2016-04-13

Downloads
63 (#369,112)

6 months
7 (#613,833)

Historical graph of downloads
How can I increase my downloads?