Empirical two-point correlation functions

Foundations of Physics 18 (4):449-460 (1988)
  Copy   BIBTEX

Abstract

Let A 1 , A 2 , A 3 A 4 be four observables, the compatible observables among them being (A 1 , A 3 ), (A 1 , A 4 ), (A 2 , A 3 ), (A 2 , A 4 ). In order that the empirical data be reproducible by a quantum or a classical theory, the two-point correlation functions $$\{ C_{ij} = \left\langle {A_i A_j } \right\rangle :i,j a compatible pair\} $$ must necessarily satisfy $$|X_{13} X_{14} - X_{23} X_{24} | \leqslant \left( {1 - X_{13} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \left( {1 - X_{14} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \left( {1 - X_{23} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \left( {1 - X_{24} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} (*)$$ where Xij=CijC ii −1/2 C jj −1/2 . In the case ofGaussian data, this inequality is alsosufficient; If (*) holds, there is a Gaussian joint distribution for A 1 , A 2 , A 3 , A 4 which reproduces the Gaussian data for compatible pairs. It follows that Bell's inequality is satisfied by all true-false propositions about the Gaussian data. A further consequence of the analysis is thatquantum Gaussian fields satisfy Bell's inequality for all true-false propositions aboutfield measurements.The maximum violation of (*) corresponds to Rastall's example in the case of two-valued observables

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,937

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Rekursion über Dilatoren und die Bachmann-Hierarchie.Peter Päppinghaus - 1989 - Archive for Mathematical Logic 28 (1):57-73.
Historia de la filosofía moderna y contemporánea.David Torrijos-Castrillejo - 2017 - Madrid: Ediciones Universidad San Dámaso.
A note on da Costa-Doria “exotic formalizations”.L. Gordeev - 2010 - Archive for Mathematical Logic 49 (7-8):813-821.

Analytics

Added to PP
2013-11-22

Downloads
50 (#437,476)

6 months
8 (#583,676)

Historical graph of downloads
How can I increase my downloads?