Abstract
The basic Bayesian model of credence states, where each individual’s belief state is represented by a single probability measure, has been criticized as psychologically implausible, unable to represent the intuitive distinction between precise and imprecise probabilities, and normatively unjustifiable due to a need to adopt arbitrary, unmotivated priors. These arguments are often used to motivate a model on which imprecise credal states are represented by sets of probability measures. I connect this debate with recent work in Bayesian cognitive science, where probabilistic models are typically provided with explicit hierarchical structure. Hierarchical Bayesian models are immune to many classic arguments against single-measure models. They represent grades of imprecision in probability assignments automatically, have strong psychological motivation, and can be normatively justified even when certain arbitrary decisions are required. In addition, hierarchical models show much more plausible learning behavior than flat representations in terms of sets of measures, which—on standard assumptions about update—rule out simple cases of learning from a starting point of total ignorance.