Dissipation in the Klein-Gordon Field

Foundations of Physics 29 (9):1457-1478 (1999)
  Copy   BIBTEX

Abstract

The formalism of (±)-frequency parts , previously applied to solution of the D'Alembert equation in the case of the electromagnetic field, is applied to solution of the Klein-Gordon equation for the K-G field in the presence of sources. Retarded and advanced field operators are obtained as solutions, whose frequency parts satisfy a complex inhomogeneous K-G equation. Fourier transforms of these frequency parts are solutions of the central equation, which determines the time dependence of the destruction/creation operators of the field. The retarded field operator is resolved into kinetic and dissipative components. Correspondingly, the energy/stress tensor is resolved into three components; the power/force density, into two—a kinetic and a dissipative component. As in the analogous electromagnetic case the dissipation theorem is derived according to which work done by the dissipative power/force is negative: energy/momentum is dissipated from the sources to the K-G field. Boson quantization conditions are satisfied by the kinetic component but not by the dissipative component of the retarded K-G field

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,169

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-22

Downloads
84 (#268,342)

6 months
6 (#724,158)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references