The minimal complementation property above 0′

Mathematical Logic Quarterly 51 (5):470-492 (2005)
  Copy   BIBTEX

Abstract

Let us say that any (Turing) degree d > 0 satisfies the minimal complementation property (MCP) if for every degree 0 < a < d there exists a minimal degree b < d such that a ∨ b = d (and therefore a ∧ b = 0). We show that every degree d ≥ 0′ satisfies MCP. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,752

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Properly Σ2 minimal degrees and 0″ complementation.S. Cooper, Andrew Lewis & Yue Yang - 2005 - Mathematical Logic Quarterly 51 (3):274-276.
Minimal Complements for Degrees below 0´.Andrew Lewis - 2004 - Journal of Symbolic Logic 69 (4):937 - 966.
On the jump classes of noncuppable enumeration degrees.Charles M. Harris - 2011 - Journal of Symbolic Logic 76 (1):177 - 197.
Prime models of computably enumerable degree.Rachel Epstein - 2008 - Journal of Symbolic Logic 73 (4):1373-1388.
Complementation in the Turing degrees.Theodore A. Slaman & John R. Steel - 1989 - Journal of Symbolic Logic 54 (1):160-176.
The degree spectra of homogeneous models.Karen Lange - 2008 - Journal of Symbolic Logic 73 (3):1009-1028.
Minimal complements for degrees below 0'.Andrew Lewis - 2004 - Journal of Symbolic Logic 69 (4):937-966.

Analytics

Added to PP
2013-10-31

Downloads
48 (#456,254)

6 months
5 (#1,035,390)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Double Jumps of Minimal Degrees.Carl G. Jockusch & David B. Posner - 1978 - Journal of Symbolic Logic 43 (4):715 - 724.
Minimal degrees and the jump operator.S. B. Cooper - 1973 - Journal of Symbolic Logic 38 (2):249-271.
A theorem on minimal degrees.J. R. Shoenfield - 1966 - Journal of Symbolic Logic 31 (4):539-544.
The upper semilattice of degrees ≤ 0' is complemented.David B. Posner - 1981 - Journal of Symbolic Logic 46 (4):705 - 713.

View all 11 references / Add more references