Bounding cappable degrees

Archive for Mathematical Logic 39 (5):311-352 (2000)
  Copy   BIBTEX

Abstract

It will be shown that there exist computably enumerable degrees a and b such that a $>$ b, and for any computably enumerable degree u, if u $\leq$ a and u is cappable, then u $<$ b

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 101,369

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On a conjecture of Lempp.Angsheng Li - 2000 - Archive for Mathematical Logic 39 (4):281-309.
Complementing cappable degrees in the difference hierarchy.Rod Downey, Angsheng Li & Guohua Wu - 2004 - Annals of Pure and Applied Logic 125 (1-3):101-118.
Bounding minimal degrees by computably enumerable degrees.Angsheng Li & Dongping Yang - 1998 - Journal of Symbolic Logic 63 (4):1319-1347.
The computably enumerable degrees are locally non-cappable.Matthew B. Giorgi - 2003 - Archive for Mathematical Logic -1 (1):1-1.
An Interval of Computably Enumerable Isolating Degrees.Matthew C. Salts - 1999 - Mathematical Logic Quarterly 45 (1):59-72.
On the distribution of Lachlan nonsplitting bases.S. Barry Cooper, Angsheng Li & Xiaoding Yi - 2002 - Archive for Mathematical Logic 41 (5):455-482.
On a problem of Cooper and Epstein.Shamil Ishmukhametov - 2003 - Journal of Symbolic Logic 68 (1):52-64.

Analytics

Added to PP
2013-11-23

Downloads
18 (#1,120,504)

6 months
6 (#882,325)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

A minimal pair of recursively enumerable degrees.C. E. M. Yates - 1966 - Journal of Symbolic Logic 31 (2):159-168.
The d.r.e. degrees are not dense.S. Cooper, Leo Harrington, Alistair Lachlan, Steffen Lempp & Robert Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
Minimal pairs and high recursively enumerable degrees.S. B. Cooper - 1974 - Journal of Symbolic Logic 39 (4):655-660.
Bounding minimal pairs.A. H. Lachlan - 1979 - Journal of Symbolic Logic 44 (4):626-642.
A non-inversion theorem for the jump operator.Richard A. Shore - 1988 - Annals of Pure and Applied Logic 40 (3):277-303.

View all 7 references / Add more references