Abstract
Otsuka (2023) argues for a correspondence between data science and traditional epistemology: Bayesian statistics is internalist; classical (frequentist) statistics is externalist, owing to its reliabilist nature; model selection is pragmatist; and machine learning is a version of virtue epistemology. Where he sees diversity, I see an opportunity for unity. In this article, I argue that classical statistics, model selection, and machine learning share a foundation that is reliabilist in an unconventional sense that aligns with internalism. Hence a unification under internalist reliabilism.