Short Circuit Fault Detection against High Thermal Background Using a Two-Level Scheme Based on DoG Filter

Complexity 2021:1-13 (2021)
  Copy   BIBTEX

Abstract

Short circuit is a key factor which drastically affects the efficiency of metal electrorefining. Infrared image of the intercell busbar region is used to perform short circuit detection. To cope with the high thermal background, a two-level short circuit detection method is designed. Firstly, with background subtraction, high intensity short circuit electrodes, as well as the background, are removed, and normal working electrodes are preserved. In the second stage, suspicious short circuit areas are sifted out by normal electrode detecting and texture period estimation. Gaussian difference filter which is based on the human visual system is improved to match the target gray distribution. A comparative experiment indicates that the proposed orthogonal DoG outperforms the original DoG and top-hat in the accuracy of normal electrode detection. The two-level detection method in this paper is applied in a copper electrolysis plant and exhibits superiority in locating short circuits and avoiding miss detection.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-01-30

Downloads
12 (#1,461,278)

6 months
2 (#1,359,420)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references