Similar systems and dimensionally invariant laws

Philosophy of Science 38 (2):157-169 (1971)
  Copy   BIBTEX

Abstract

Using H. Whitney's algebra of physical quantities and his definition of a similarity transformation, a family of similar systems (R. L. Causey [3] and [4]) is any maximal collection of subsets of a Cartesian product of dimensions for which every pair of subsets is related by a similarity transformation. We show that such families are characterized by dimensionally invariant laws (in Whitney's sense, [10], not Causey's). Dimensional constants play a crucial role in the formulation of such laws. They are represented as a function g, known as a system measure, from the family into a certain Cartesian product of dimensions and having the property gφ =φ g for every similarity φ . The dimensions involved in g are related to the family by means of certain stability groups of similarities. A one-to-one system measure is a proportional representing function, which plays an analogous role in Causey's theory, but not conversely. The present results simplify and clarify those of Causey

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 105,824

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
157 (#154,180)

6 months
15 (#211,496)

Historical graph of downloads
How can I increase my downloads?