How high can Baumgartner’s $${\mathcal{I}}$$ I -ultrafilters lie in the P-hierarchy?

Archive for Mathematical Logic 54 (5-6):555-569 (2015)
  Copy   BIBTEX

Abstract

Under the continuum hypothesis we prove that for any tall P-ideal Ionω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I} \,{\rm on}\,\, \omega}$$\end{document} and for any ordinal γ≤ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma \leq \omega_1}$$\end{document} there is an I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document}-ultrafilter in the sense of Baumgartner, which belongs to the class Pγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_{\gamma}}$$\end{document} of the P-hierarchy of ultrafilters. Since the class of P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_2}$$\end{document} ultrafilters coincides with the class of P-points, our result generalizes the theorem of Flašková, which states that there are I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document}-ultrafilters which are not P-points.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,865

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Relations between the $${\mathcal {I}}$$ I -ultrafilters.Shuguo Zhang & Jianyong Hong - 2017 - Archive for Mathematical Logic 56 (1-2):161-173.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.

Analytics

Added to PP
2015-04-03

Downloads
27 (#822,464)

6 months
7 (#699,353)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Continuous extension of maps between sequential cascades.Szymon Dolecki & Andrzej Starosolski - 2021 - Annals of Pure and Applied Logic 172 (4):102928.

Add more citations

References found in this work

Ultrafilters on ω.James E. Baumgartner - 1995 - Journal of Symbolic Logic 60 (2):624-639.
P-hierarchy on β ω.Andrzej Starosolski - 2008 - Journal of Symbolic Logic 73 (4):1202-1214.
A few special ordinal ultrafilters.Claude Laflamme - 1996 - Journal of Symbolic Logic 61 (3):920-927.
Free Boolean algebras and nowhere dense ultrafilters.Aleksander Błaszczyk - 2004 - Annals of Pure and Applied Logic 126 (1-3):287-292.
Cascades, order, and ultrafilters.Andrzej Starosolski - 2014 - Annals of Pure and Applied Logic 165 (10):1626-1638.

Add more references