Abstract
Consistency of choice is a fundamental and recurring theme in decision theory, social choice theory, behavioral economics, and psychological sciences. The purpose of this paper is to study the consistency of choice independent of the particular decision model at hand. Consistency is viewed as an inherently logical concept that is fundamentally void of connotation and is thus disentangled from traditional rationality or consistency conditions imposed on decision models. The proposed formalization of consistency takes two forms: internal consistency, which refers to the property that a choice model does not generate contradictory statements; and semantic consistency, which refers to the idea that a theory’s predictions are valid with respect to some observed data. In addressing semantic consistency, the relationship between theory and data is analyzed in terms of so-called duality mappings, which allow a passage between the two universes in a way that consistency is preserved. The formalization of consistency concepts relies on adapting the revealed preference theory to the context-dependent setting. The paper concludes by discussing the implications of the proposed framework and how it relates to classical revealed preference theory and other formalizations of the relationship between the theory and reality of choice.