Advanced Deep Learning Models for Proactive Malware Detection in Cybersecurity Systems

Journal of Science Technology and Research (JSTAR) 5 (1):666-676 (2023)
  Copy   BIBTEX

Abstract

By leveraging convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers, this research presents an intelligent malware detection framework capable of identifying both known and zero-day threats. The methodology involves feature extraction from static, dynamic, and hybrid malware datasets, followed by training DL models to classify malicious and benign software with high precision. A robust experimental setup evaluates the framework using benchmark malware datasets, yielding a 96% detection accuracy and demonstrating resilience against adversarial attacks. Real-time analysis capabilities further improve response times, reducing the risk of potential damage. The study also incorporates visualization tools to provide interpretable insights into model decisions, enhancing transparency for cybersecurity practitioners. Concluding with a discussion on the challenges and future prospects, this research paves the way for scalable, AI-driven solutions to combat evolving cyber threats.

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Revolutionizing Cybersecurity: Intelligent Malware Detection Through Deep Neural Networks.M. Sheik Dawood - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-666.
A Novel Deep Learning-Based Framework for Intelligent Malware Detection in Cybersecurity.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):666-669.
Intelligent Malware Detection Empowered by Deep Learning for Cybersecurity Enhancement.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):625-635.
Empowering Cybersecurity with Intelligent Malware Detection Using Deep Learning Techniques.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):655-665.
Comprehensive Detection of Malware and Trojans in Power Sector Software: Safeguarding Against Cyber Threats.A. Sai Lochan - 2024 - International Journal of Engineering Innovations and Management Strategies 1 (11):1-14.
Adaptive SVM Techniques for Optimized Detection of Known and Novel Cyber Intrusions.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):398-405.
Deep Learning - Driven Data Leakage Detection for Secure Cloud Computing.Yoheswari S. - 2025 - International Journal of Engineering Innovations and Management Strategies 1 (1):1-4.

Analytics

Added to PP
2024-11-30

Downloads
70 (#322,341)

6 months
70 (#89,799)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references