A Phrase-Based Alignment Model for Natural Language Inference

Abstract

The alignment problem—establishing links between corresponding phrases in two related sentences—is as important in natural language inference (NLI) as it is in machine translation (MT). But the tools and techniques of MT alignment do not readily transfer to NLI, where one cannot assume semantic equivalence, and for which large volumes of bitext are lacking. We present a new NLI aligner, the MANLI system, designed to address these challenges. It uses a phrase-based alignment representation, exploits external lexical resources, and capitalizes on a new set of supervised training data. We compare the performance of MANLI to existing NLI and MT aligners on an NLI alignment task over the well-known Recognizing Textual Entailment data. We show that MANLI significantly outperforms existing aligners, achieving gains of 6.2% in F1 over a representative NLI aligner and 10.5% over GIZA++.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Natural Language Inference in Coq.Stergios Chatzikyriakidis & Zhaohui Luo - 2014 - Journal of Logic, Language and Information 23 (4):441-480.

Analytics

Added to PP
2010-12-22

Downloads
111 (#204,376)

6 months
3 (#1,170,603)

Historical graph of downloads
How can I increase my downloads?