Categorical foundations of mathematics or how to provide foundations for abstract mathematics

Review of Symbolic Logic 6 (1):51-75 (2013)
  Copy   BIBTEX

Abstract

Fefermans argument is indeed convincing in a certain context, it can be dissolved entirely by modifying the context appropriately.

Other Versions

No versions found

Similar books and articles

Analytics

Added to PP
2013-11-22

Downloads
1,693 (#8,637)

6 months
175 (#21,089)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Jean-Pierre Marquis
Université de Montréal

Citations of this work

Facets and Levels of Mathematical Abstraction.Hourya Benis Sinaceur - 2014 - Philosophia Scientiae 18 (1):81-112.
What is a Higher Level Set?Dimitris Tsementzis - 2016 - Philosophia Mathematica:nkw032.
Canonical Maps.Jean-Pierre Marquis - 2017 - In Elaine M. Landry (ed.), Categories for the Working Philosopher. Oxford, England: Oxford University Press. pp. 90-112.

Add more citations

References found in this work

The Number Sense: How the Mind Creates Mathematics.Stanislas Dehaene - 1999 - British Journal of Educational Studies 47 (2):201-203.
Homotopy theoretic models of identity types.Steve Awodey & Michael Warren - 2009 - Mathematical Proceedings of the Cambridge Philosophical Society 146:45–55.
Sheaves and Logic.M. P. Fourman, D. S. Scott & C. J. Mulvey - 1983 - Journal of Symbolic Logic 48 (4):1201-1203.
La logique Des topos.André Boileau & André Joyal - 1981 - Journal of Symbolic Logic 46 (1):6-16.

View all 17 references / Add more references