Exhaustive classication of finite classical probability spaces with regard to the notion of causal up-to-n-closedness

Abstract

Extending the ideas from (Hofer-Szabó and Rédei [2006]), we introduce the notion of causal up-to-n-closedness of probability spaces. A probability space is said to be causally up-to-n-closed with respect to a relation of independence R_ind iff for any pair of correlated events belonging to R_ind the space provides a common cause or a common cause system of size at most n. We prove that a finite classical probability space is causally up-to-3-closed w.r.t. the relation of logical independence iff its probability measure is constant on the set of atoms of non-0 probability. (The latter condition is a weakening of the notion of measure uniformity.) Other independence relations are also considered.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 101,601

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

When can statistical theories be causally closed?Balázs Gyenis & Miklós Rédei - 2002 - Foundations of Physics 34 (9):1285-1303.
Completion of the Causal Completability Problem.Michał Marczyk & Leszek Wroński - 2015 - British Journal for the Philosophy of Science 66 (2):307-326.
Characterizing common cause closedness of quantum probability theories.Yuichiro Kitajima & Miklós Rédei - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (B):234-241.
Reichenbachian common cause systems.Gábor Hofer-Szabó & Miklos Redei - 2004 - International Journal of Theoretical Physics 43:1819-1826.
On Reichenbach's common cause principle and Reichenbach's notion of common cause.G. Hofer-Szabo - 1999 - British Journal for the Philosophy of Science 50 (3):377-399.
On Reichenbach's Common Cause Principle and Reichenbach's Notion of Common Cause.G. Hofer-SzabÓ - 1999 - British Journal for the Philosophy of Science 50 (3):377-399.

Analytics

Added to PP
2009-06-18

Downloads
81 (#261,756)

6 months
4 (#1,291,611)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Leszek Wroński
Jagiellonian University

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references