O6‐alkylguanine‐DNA alkyltransferase: Role in carcinogenesis and chemotherapy

Bioessays 24 (3):255-266 (2002)
  Copy   BIBTEX

Abstract

The DNA in human cells is continuously undergoing damage as consequences of both endogenous processes and exposure to exogenous agents. The resulting structural changes can be repaired by a number of systems that function to preserve genome integrity. Most pathways are multicomponent, involving incision in the damaged DNA strand and resynthesis using the undamaged strand as a template. In contrast, O6-alkylguanine-DNA alkyltransferase is able to act as a single protein that reverses specific types of alkylation damage simply by removing the offending alkyl group, which becomes covalently attached to the protein and inactivates it. The types of damage that ATase repairs are potentially toxic, mutagenic, recombinogenic and clastogenic. They are generated by certain classes of carcinogenic and chemotherapeutic alkylating agents. There is consequently a great deal of interest in this repair system in relation to both carcinogenesis and cancer chemotherapy. BioEssays 24:255–266, 2002. © 2002 Wiley Periodicals, Inc.; DOI 10.1002/bies.10063.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,561

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-23

Downloads
27 (#800,670)

6 months
7 (#655,041)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references