Abstract
Hilbert developed his famous finitist point of view in several essays in the 1920s. In this paper, we discuss various extensions of it, with particular emphasis on those suggested by Hilbert and Bernays in Grundlagen der Mathematik (vol. I 1934, vol. II 1939). The paper is in three sections. The first deals with Hilbert's introduction of a restricted ? -rule in his 1931 paper ?Die Grundlegung der elementaren Zahlenlehre?. The main question we discuss here is whether the finitist (meta-)mathematician would be entitled to accept this rule as a finitary rule of inference. In the second section, we assess the strength of finitist metamathematics in Hilbert and Bernays 1934. The third and final section is devoted to the second volume of Grundlagen der Mathematik. For preparatory reasons, we first discuss Gentzen's proposal of expanding the range of what can be admitted as finitary in his esssay ?Die Widerspruchsfreiheit der reinen Zahlentheorie? (1936). As to Hilbert and Bernays 1939, we end on a ?critical? note: however considerable the impact of this work may have been on subsequent developments in metamathematics, there can be no doubt that in it the ideals of Hilbert's original finitism have fallen victim to sheer proof-theoretic pragmatism