The Connection of the Generalized Robinson–Foulds Metric with Partial Wiener Indices

Acta Biotheoretica 71 (1):1-10 (2023)
  Copy   BIBTEX

Abstract

In this work we propose the partial Wiener index as one possible measure of branching in phylogenetic evolutionary trees. We establish the connection between the generalized Robinson–Foulds (RF) metric for measuring the similarity of phylogenetic trees and partial Wiener indices by expressing the number of conflicting pairs of edges in the generalized RF metric in terms of partial Wiener indices. To do so we compute the minimum and maximum value of the partial Wiener index WT,r,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\left(T,r, n\right)$$\end{document}, where T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} is a binary rooted tree with root r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} leaves. Moreover, under the Yule probabilistic model, we show how to compute the expected value of WT,r,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\left(T,r, n\right)$$\end{document}. As a direct consequence, we give exact formulas for the upper bound and the expected number of conflicting pairs. By doing so we provide a better theoretical understanding of the computational complexity of the generalized RF metric.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 100,063

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.

Analytics

Added to PP
2023-01-26

Downloads
15 (#1,220,934)

6 months
5 (#1,013,651)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references