Abstract
Mereotopology is the discipline obtained from combining topology with the formal study of parts and their relation to wholes, or mereology. This article develops a mereotopological theory of time, illustrating how different temporal topologies can be effectively discriminated on this basis. Specifically, we demonstrate how the three principal types of temporal models—namely, the linear ones, the forking ones, and the circular ones—can be characterized by differently combining two sole mereotopological constraints: one to denote the absence of closed loops, and the other one to denote the absence of branches.