Abstract
Let S be a deductive system such that S-derivability (⊦s) is arithmetic and sound with respect to structures of class K. From simple conditions on K and ⊦s, it follows constructively that the K-completeness of ⊦s implies MP(S), a form of Markov's Principle. If ⊦s is undecidable then MP(S) is independent of first-order Heyting arithmetic. Also, if ⊦s is undecidable and the S proof relation is decidable, then MP(S) is independent of second-order Heyting arithmetic, HAS. Lastly, when ⊦s is many-one complete, MP(S) implies the usual Markov's Principle MP. An immediate corollary is that the Tarski, Beth and Kripke weak completeness theorems for the negative fragment of intuitionistic predicate logic are unobtainable in HAS. Second, each of these: weak completeness for classical predicate logic, weak completeness for the negative fragment of intuitionistic predicate logic and strong completeness for sentential logic implies MP. Beth and Kripke completeness for intuitionistic predicate or sentential logic also entail MP. These results give extensions of the theorem of Gödel and Kreisel (in [4]) that completeness for pure intuitionistic predicate logic requires MP. The assumptions of Godel and Kreisel's original proof included the Axiom of Dependent Choice and Herbrand's Theorem, no use of which is explicit in the present article