Stochastic Bohmian and Scaled Trajectories

Foundations of Physics 52 (4):1-36 (2022)
  Copy   BIBTEX

Abstract

In this review we deal with open quantum systems within the Bohmian mechanics framework which has the advantage to provide a clear picture of quantum phenomena in terms of trajectories, originally in configuration space. The gradual decoherence process is studied from linear and nonlinear Schrödinger equations through Bohmian trajectories as well as by using the so-called quantum-classical transition differential equation through scaled trajectories. This transition is governed by a continuous parameter, the transition parameter, covering these two extreme open dynamical regimes. Thus, two sources of decoherence of different nature are going to be considered. Several examples will be presented and discussed in order to illustrate the corresponding theory behind each case, namely: the so-called Brownian–Bohmian motion leading to quantum diffusion coefficients, dissipative diffraction in time, dissipative tunnelling for a parabolic barrier under the presence of an electric field and stochastic early arrivals for the same type of barrier. In order to simplify the notations and physical discussion, the theoretical developments will be carried out in one dimension throughout all this wok. One of the main goals is to analyze the gradual decoherence process existing in these open dynamical regimes in terms of trajectories, leading to a more intuitive way of understanding the underlying physics in order to gain new insights.

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 105,824

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2022-07-20

Downloads
19 (#1,175,108)

6 months
2 (#1,361,875)

Historical graph of downloads
How can I increase my downloads?