Abstract
ABSTRACT In a recent essay, Sören Stenlund tries to align Wittgenstein’s approach to the foundations and nature of mathematics with the tradition of symbolic mathematics. The characterization of symbolic mathematics made by Stenlund, according to which mathematics is logically separated from its external applications, brings it closer to the formalist position. This raises naturally the question whether Wittgenstein holds a formalist position in philosophy of mathematics. The aim of this paper is to give a negative answer to this question, defending the view that Wittgenstein always thought that there is no logical separation between mathematics and its applications. I will focus on Wittgenstein’s remarks about arithmetic during his middle period, because it is in this period that a formalist reading of his writings is most tempting. I will show how his idea of autonomy of arithmetic is not to be compared with the formalist idea of autonomy, according to which a calculus is “cut off” from its applications. The autonomy of arithmetic, according to Wittgenstein, guarantees its own applicability, thus providing its own raison d’être. RESUMO Em um recente artigo, Sören Stenlund procura alinhar a abordagem de Wittgenstein em relação aos fundamentos e à natureza da matemática com a tradição da matemática simbólica. A caracterização da matemática simbólica feita por Stenlund, de acordo com a qual a matemática é logicamente separada de suas aplicações externas, a aproxima da posição formalista. Isto naturalmente levanta a questão de se Wittgenstein defende uma posição formalista em filosofia da matemática. O objetivo deste artigo é dar uma resposta negativa a esta questão, ao defender que Wittgenstein sempre pensou não haver separação lógica entre a matemática e suas aplicações. Atenção especial será dada às observações de Wittgenstein sobre a aritmética pertencentes ao seu período intermediário, pois é neste período que uma leitura formalista de seus escritos é mais sedutora. Mostrarei como sua ideia de autonomia da aritmética não deve ser comparada à ideia formalista de autonomia, segundo a qual um cálculo é “cortado” de suas aplicações. A autonomia da aritmética, para Wittgenstein, garante ela própria sua aplicabilidade, provendo, assim, sua própria raison d’être.