Many-Hilbert-spaces theory of quantum measurements

Foundations of Physics 18 (1):29-55 (1988)
  Copy   BIBTEX

Abstract

The many-Hilbert-spaces theory of quantum measurements, which was originally proposed by S. Machida and the present author, is reviewed and developed. Dividing a typical quantum measurement in two successive steps, the first being responsible for spectral decomposition and the second for detection, we point out that the wave packet reduction by measurement takes place at the latter step, through interaction of an object system with one of the local systems of detectors. First we discuss the physics of the detection process, using numerical simulations for a simple detector model, and then formulate a general theory of quantum measurements to give the wave packet reduction in an explicit form as a sort of phase transition. The derivation is based on the macroscopic nature of the local system, to be represented in a continuous direct sum of many Hilbert spaces, and on the finite-size effect of the local system, to give phase shifts proportional to size parameters. We give a definite criterion for examining any instrument as to whether it works well as a detector or not. Finally, we compare the present theory with famous measurement theories and propose a possible experimental test to discriminate it from others. A few solvable detector models are also discussed

Other Versions

No versions found

Links

PhilArchive

    This entry is not archived by us. If you are the author and have permission from the publisher, we recommend that you archive it. Many publishers automatically grant permission to authors to archive pre-prints. By uploading a copy of your work, you will enable us to better index it, making it easier to find.

    Upload a copy of this work     Papers currently archived: 106,168

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-22

Downloads
53 (#453,362)

6 months
3 (#1,170,603)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references