Abstract
We present equiconsistency results at the level of subcompact cardinals. Assuming SBHδ, a special case of the Strategic Branches Hypothesis, we prove that if δ is a Woodin cardinal and both □ and □δ fail, then δ is subcompact in a class inner model. If in addition □ fails, we prove that δ is Π12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_1^2}$$\end{document} subcompact in a class inner model. These results are optimal, and lead to equiconsistencies. As a corollary we also see that assuming the existence of a Woodin cardinal δ so that SBHδ holds, the Proper Forcing Axiom implies the existence of a class inner model with a Π12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_1^2}$$\end{document} subcompact cardinal. Our methods generalize to higher levels of the large cardinal hierarchy, that involve long extenders, and large cardinal axioms up to δ is δ+ supercompact for all n < ω. We state some results at this level, and indicate how they are proved.