Abstract
In this paper we examine the pattern of conceptual change during scientific revolutions by using methods from cognitive psychology. We show that the changes characteristic of scientific revolutions, especially taxonomic changes, can occur in a continuous manner. Using the frame model of concept representation to capture structural relations within concepts and the direct links between concept and taxonomy, we develop an account of conceptual change in science that more adequately reflects the current understanding that episodes like the Copernican revolution are not always abrupt. When concepts are represented by frames, the transformation from one taxonomy to another can be achieved in a piecemeal fashion not preconditioned by a crisis stage, and a new taxonomy can arise naturally out of the old frame instead of emerging separately from the existing conceptual system. This cognitive mechanism of continuous change demonstrates the constructive roles of anomaly and incommensurability in promoting the progress of science.